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OVERVIEW

The primary objective of this project was to perform experimental work to further the
understanding of the fundamental physics of mistuned bladed disks. The experiments
that were carried out during the course of this project have served to corroborate
analytical and numerical findings, to validate the computational methods that have been
developed to date, and to guide the development of improved models and methods that
incorporate the relevant physics. In addition, a pioneering mistuning identification
technique was developed, and alternative designs featuring intentional mistuning were
examined in a series of simulations and experiments.




EXPERIMENTAL SETUP

During the course of this research grant and a previous research grant, an advanced
experimental facility was established at the University of Michigan, called the
Turbomachinery Vibration Laboratory. The purpose of this experimental facility is to
conduct experiments on the vibration of bladed disks in a controlled environment. The
major equipment in the laboratory is shown in Fig. 1. In order to check the experimental
setup, the Air Force Research Laboratory provided the blisk (single-piece bladed disk)
seen in Fig. 1, which will be referred to as the “Air Force blisk.” The Air Force blisk is
shown mounted on a fixture that is attached to the laboratory’s vibration-isolation table.

(b)

(a)

Fig. 1: The Turbomachinery Vibration Laboratory at the University of Michigan. (a) An
overview of the experimental facilities. (b) Full-field image capture of the vibration of an Air
Force blisk. A 2-nodal-diameter response is seen on the monitor.

The laboratory features two types of laser devices for taking non-intrusive measurements
of rotor vibration. One is an Electronic Speckle Pattern Interferometry (ESPI) system.
This device is capable of observing full-field vibration, as depicted in Fig. 1b, so that
mode shapes and forced response patterns of the system may be captured. In addition,
the laboratory has a laser vibrometer for taking highly accurate measurements at specific
points on the rotor. This vibrometer is mounted on a pair of linear actuators, as seen in
Fig. 1, which allow it to be aimed at any point in the “x-y” plane. This actuation is
computer-controlled, so that a point or a set of points can be programmed into the control
routine, and the vibration is measured automatically at the same locations on each blade.
It should be noted that the investigators have recently received DURIP funding from the
AFOSR for the purchase of a scanning laser vibrometry system, which will greatly
enhance the vibration measurement capabilities of the laboratory.




ACCOMPLISHMENTS AND NEW FINDINGS

T ravelirig Wave Excitation System

To date, all experiments have been stationary bench tests. However, a novel excitation
system has been developed [1,4,8] that provides the same engine order excitation that the
rotor would experience if it were rotating. This non-intrusive excitation system consists
of an array of speakers as shown in Fig. 2.

Fig. 2: The non-contacting, acoustic excitation shown with and without the Air Force blisk
mounted. This system consists of an array of speakers, one near each blade. The input signal
to each adjacent speaker has a phase lag equal to the interblade phase angle. This novel
system provides the equivalent of a rotating, engine order excitation in a controlled, stationary
bench test environment.

Each speaker is mounted near a blade, and a set of phase-synchronized function
generators (see Fig. 1a) provides a sinusoidal input signal to each speaker. The signals
are given a phase lag equal to the interblade phase angle of the desired engine order of
excitation. Thus, traveling wave excitation is achieved. This engine order excitation
system was a new contribution that enhances significantly the evaluation capabilities of
bench tests for turbomachinery rotors. It allows for a realistic traveling wave excitation,
while avoiding complexities associated with taking measurements in a rotating
environment. This technology has been transferred from the University of Michigan
(UM) to the Air Force Research Laboratory (AFRL) at Wright-Patterson Air Force Base.
AFRL researchers have continued to make improvements to the system, and a Disclosure
and Record of Invention (AF Form 1279) has been filed jointly by AFRL and UM
researchers.

Once this excitation system was devised, there still remained the task of ensuring that a
uniform forcing amplitude was generated by each speaker across the frequency range of




interest. To achieve this, the frequency transfer function of a speaker was measured in an
anechoic chamber. Then, the amplitude of the input signal to the speaker was calibrated
according to this frequency transfer function so that the speaker output would be
approximately constant. This provided an even excitation, across the speaker array and
across the frequency range. The acoustic pressure generated by the speakers has been
found to provide sufficient blade forcing so that accurate measurements may be taken.
Furthermore, this acoustic excitation is non-contacting, so that it does not change the
mistuning pattern or other properties of the rotor. The combination of this non-contacting
engine order excitation system and the non-contacting laser measurement devices
combine to make the Turbomachinery Vibration Laboratory a state-of-the-art facility for
observing mistuning-induced vibration phenomena and for validating analytical and
numerical predictions.

Observation of Mistuning Phenomena

The Air Force blisk was used as a test specimen for checking that all of the hardware and
attendant software in the Turbomachinery Vibration Laboratory was working properly.
In addition, the vibration characteristics of this blisk were investigated experimentally.

Because no finite element model was available for the Air Force blisk, the natural
frequencies and mode shapes had to be located and identified by experimental
exploration—a true test of the experimental facility. First, a sinusoidal force input was
provided to a single blade, and a frequency sweep was performed. By measuring blade
response with the laser vibrometer, vibration resonances were found at various
frequencies, each corresponding to vibration dominated by a single mode. Then, using
this natural frequency information, the ESPI system was used to visualize the v1brat10n
patterns at these frequencies and thus identify the mode shapes.

(a) Pair of 2-Nodal-Diameter Modes (b) Localized Modes

Fig. 3: Mode shape images captured by the ESPI system for the Air Force blisk. Vibration is
indicated by dark fringes, with each fringe corresponding to a certain quantum level of vibration.
More fringes in a blade indicate higher vibration amplitudes.

Several representative mode shapes were captured digitally, and four of these are shown
in Flg 3. Some of the modes of the Air Force blisk featured clear nodal diameter shapes.
This is because they were disk-dominated modes, which tend to be less sensitive to
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mistuning than blade-dominated modes due to stronger coupling between the blades.
Figure 3a shows a pair of 2-nodal-diameter modes. It can be seen that these modes are
rotated versions of the same shape, and that they are orthogonal to each other.
Furthermore, their natural frequencies are quite close, 905.2 Hz and 905.5 Hz. Note that
in the ideal (tuned) case, the natural frequencies of such “double modes” would be
identical. The existence of nodal diameter mode shapes, combined with the slightly
separated natural frequencies, indicates a fairly low sensitivity to mistuning at these
frequencies. That is, the rotor behaves almost as if the blades were identical for these
modes, despite the presence of some unknown amount of blade mistuning.

However, most modes were blade-dominated modes, and these modes featured
localization, indicating sensitivity to the presence of mistuning in the Air Force blisk. In
Fig. 3b, two examples of localized modes are shown. These modes are extremely close
in frequency, yet they do not resemble each other at all. The vibration is localized to
mostly a few blades in these mode shapes. This highlights the dramatic effects of
mistuning on the system response.

In addition to developing an engine order excitation system and examining the resonant
modes, a fundamental excitation-mode interaction mechanism was identified and
explained. In particular, it was observed that traveling wave excitation could lead to
standing wave response. This was explained by the fact that a traveling wave may be
considered to be a combination of two standing wave modes with the same spatial
harmonic. In the ideal, tuned case, the modes in a mode pair have exactly the same
frequency. However, even a small amount of mistuning causes the natural frequencies of
a mode pair to separate. This is known as “peak splitting,” because if the damping in the
system is low enough, the resonant peaks of the two modes will be distinct.

Therefore, for a system with mistuning and light damping, the bladed disk will vibrate
primarily in one standing wave mode near one resonant frequency, and primarily in the
other standing wave mode near the other resonant frequency. In between the two peaks,
traveling wave response may be seen, although the response amplitudes will not be as
large due to the off-resonance condition. This traveling/standing wave phenomenon is
illustrated in Fig. 4.
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Fig. 4: Blade amplitude and phase data for the forced response of the Air Force blisk at 908
Hz (left) and 911 Hz (right). The peak-splitting phenomenon is seen in the plot at center: two
orthogonal, standing wave modes have slightly different resonant frequencies due to
mistuning. Because of this separation, traveling wave excitation yields a standing wave
response near one of the resonant frequencies, as seen on the left. in between the two peaks,
the combination of standing wave modes yields traveling wave response, as seen on the right.

Validation of Mistuning Theory

Although the experimental study of the Air Force blisk’s vibration provided an excellent
validation of the experimental facility, it did not serve to validate quantitatively any
mistuning theories or modeling codes. In fact, most industrial rotors are ill suited to
validating mistuning theory, since the actual mistuning cannot be determined nor
controlled in a precise manner.

With this in mind, a blisk was designed and manufactured specifically for use in
experimental validation of mistuning theory. The finite element mesh for this blisk,
which is referred to as the “validation blisk,” is shown in Fig. 5a.

The design of the validation blisk was performed with significant input and feedback
from AFRL engineers at the Turbine Engine Fatigue Facility (TEFF) at Wright-Patterson




Air Force Base. Several “iterations” were performed in the design process. The UM
researchers began with a basic geometry that satisfied two initial criteria: (1) the key
characteristics were representative of an industrial bladed disk, and (2) it was compatible
with the hardware in the TEFF spin rig. ‘At each design iteration, the REDUCE code was
used to predict the vibration characteristics for that design. Based on that analysis,
changes were made in the finite element model for the next design iteration.

(a) (b)

Fig. 5: The validation blisk. (a) Finite element mesh of the final design. (b) Two views of the
manufactured blisk.

The final design of the validation blisk, as shown in Fig. 5, has the following features that
make it ideal for experimental validation of mistuning theory:

* Thick blades: the thickness decreases the sensitivity to mistuning due to
manufacturing tolerances

* 24 sectors: this number was selected so that every engine order of excitation for the
system that corresponds to a nodal diameter mode shape (0—12) can be produced by
the assembly of phase-synchronized function generators in the laboratory

* A raised hub: keeping the mounting surface away from the main disk lessens the
impact of the boundary conditions, thus increasing the repeatability of experiments
and reducing unmodeled effects

* Flat blades: specific mistuning patterns may be added intentionally by attaching
masses to the blades

Once the design was set, the blisk was manufactured from a single piece of annealed
steel. Computer-numerically-controlled machining was used to hold the manufacturing
tolerances to less than 5x10™ inches.



Some of the mode shapes of the validation blisk are shown in Fig. 6. Note that these
modes are all nodal diameter modes, despite the fact that some of them are blade-
dominated modes that would typically be sensitive to mistuning. In addition, the natural
frequencies are plotted as a function of the number of nodal diameters in Fig. 6d. Note
that there is excellent agreement between the predictions from finite element analysis of
the nominal (tuned) design and the measurements for the actual validation blisk. The
combination of targeted design and precision manufacturing has successfully produced a
test specimen that features “tuned” behavior.

(a) 2 nodal diameters (b) 4 nodal diameters {(c) 6 nodal diameters
socat
080} N PR
70008
ﬁ i) -
gmiﬁiw*«yaavé:ﬁ‘ﬁﬁ
g oo ) 1
§ 500!
3000% & #
% . "
2000} ¥ @ i “ W% “ # @
2
:ood, @
<

? 2 "0 12

4 & 1
Moy of Nods! Diametery
(d) Predicted and measured natural frequencies versus nodal diameters

Fig. 6: Modes and natural frequencies of the validation blisk.

- As mentioned above, mistuning can be added by attaching masses to the blades. (The
effects of implementing mass mistuning in this manner have been investigated [10].)
Thus, the mistuning in the blisk can be controlled, and the blisk can be used to validate
modeling predictions for both tuned and mistuned systems. The validation blisk has been

used to verify the mistuning identification technique and the intentional mistuning design
strategy that will be described below.




Mistuning Identification

An important practical consideration for mistuning research is how to identify the
mistuning that is actually present in a manufactured bladed disk. Mistuning identification
is important because it can be used for the following critical tasks:

* To determine mistuning parameters that are used in vibration models
* To assess the quality of the manufacturing process
* To validate the integrity of a manufactured rotor before placing it in service

* To perform in-service structural health monitoring of jet engine rotors (e.g., to |
identify a cracked blade)

The pioneering mistuning identification technique developed in this research program has
provided a major step forward in this area.

For rotor stages with inserted blades, the blade natural frequencies can be measured
individually. However, for a blisk—a one-piece bladed disk—the blades cannot be
removed from the assembly. Therefore, a mistuning identification technique [2—4,7] was
developed by the investigators to determine the mistuning pattern for each blade mode
family of interest.

In order to identify individual blade mistuning from the dynamics of an entire bladed
disk, two sources of information are used. The first is a theoretical model of the bladed
disk, containing enough information to predict its response accurately if all structural
parameters were known. The second is a set a measurements of the response of the
actual blisk, which can be used together with the information in the model to determine
the mistuning parameters responsible for such behavior. A reduced-order modeling
technique previously developed by the investigators makes use of component mode
synthesis (CMS) to reduce the size of the finite element model, and then follows this with
a secondary modal analysis, further reducing the model size using a set of modes of the
CMS model. In the mistuning identification process, the same CMS method is used, but
it is followed by a secondary modal analysis that condenses only the disk and disk-blade
interface portions of the CMS model. The result is an extremely reduced model that
retains blade modal stiffnesses explicitly. Then a small set of experimental
measurements of the system response can be used to determine the mistuning for the
isolated blade modal stiffnesses. Either mode shape measurements or forced response
measurements can be used [7].

The accuracy of the mistuning identification technique was checked using the validation
blisk in a sequence of test cases [4]. One of these test cases involved identifying the
small mistuning inherently present in the manufactured validation blisk, and then trying
to improve the tuning by adding to the blades a set of lead weights with slightly different
mass values designed to cancel out the mistuning pattern identified for the blisk. First, the
mistuning in the validation blisk was identified from a set of system mode shape
measurements, and it was found that the modal stiffness mistuning had a standard
deviation of 0.35%. Then, a pattern of lead weights was chosen and attached to the blade
tips (see Fig. 7a) in an attempt to give every blade the same modal stiffness in the first




flexural mode. After applying the pattern of weights, measurements of the free vibration
mode shapes were made, and the mistuning identification algorithm was again used to
determine the mistuning that was actually present in this nearly tuned case.
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Fig. 7: (a) A lead weight attached to a blade tip of the validation blisk. Weights of various sizes
were attached to the blade tips to control the blade mistuning. (b) Improved tuning of the
validation blisk based on identifying the mistuning and then attaching a set of weights to try to
cancel out the identified mistuning pattern. The standard deviation of mistuning was reduced
from 0.35% to 0.20%.

Fig. 7b shows the mistuning pattern of the blisk before and after the masses were added.
The y-axis shows the percentage of the original design modal stiffness on the left, and the
percentage of the new intended baseline modal stiffness on the right (note that adding
mass lowers the blade eigenvalues, which are also the blade modal stiffnesses assuming
mass normalization of the modes). It is clear that progress has been made in tuning the
blisk: the standard deviation of the new nearly tuned pattern is about 0.20%, versus
0.35% previously, and the difference between the maximum and minimum values has
been significantly reduced. It is believed that the remaining mistuning cannot be
eliminated, due to the level of uncertainty for the mass values of the lead weights and the
glue used for attachment.

Recently, this mistuning identification technique was improved by changing the
formulation to take advantage of recent advances in mistuning modeling. In particular,
the component mode mistuning (CMM) method [9], which was recently introduced by
the investigators, forms the basis of the enhanced mistuning identification technique [11].
The latest results have shown a significant improvement in the accuracy of the identified
mistuning patterns for a test case.




Intentional Mistuning

Another important aspect of this research program has been the exploration of novel
designs that mitigate the damaging effects of mistuning. In particular, the use of
“intentional mistuning” has been investigated [5,6,12]. This is a novel, alternative bladed
disk design strategy that was proposed and examined in this research program.

Intentional mistuning is the deliberate implementation of blade-to-blade differences in the
nominal design. Instead of trying to make all blades exactly the same, the blades are
made different by using two or more blade designs featuring different natural
frequencies. The reason for doing this is simple: forced response does not increase
monotonically with increasing mistuning. There is often a critical region of mistuning
strength that leads to the largest blade amplitudes. If the mistuning is below that critical
zone, then the system modes are close to the nodal diameter modes of the tuned case. In
this case, the vibration energy flows freely from blade to blade, and thus the energy is
distributed throughout the system. If the mistuning is above the critical zone, then the
modes become highly localized, and the forcing at one blade has little effect on other
blades. In this case, the energy is distributed among the blades because it cannot be
transferred well between blades. In the critical region, there is sufficient communication
between blades to allow energy transfer, but the modes are sufficiently localized that the
vibration energy is trapped in small regions of the system, leading to a few blades with
large amplitudes. Therefore, intentional mistuning in the design may provide a
mechanism for keeping the mistuning above the critical region for any level of “random
mistuning” (mistuning in the traditional sense—e.g., parameter differences due to
manufacturing tolerances and in-operation wear).

This “peak phenomenon” of the vibration amplitude as a function of mistuning strength is
illustrated in Fig. 8 for an industrial blisk. Figure 8 shows the 99th percentile of the
amplitude magnification, which is the ratio of the maximum mistuned forced response to
the maximum tuned forced response. Thus, an amplitude magnification of 1.5 would
indicate a 50% increase in the maximum vibration amplitude due to mistuning. It can be
seen in Fig. 8 that the original design suffers a roughly 90% increase in vibration
amplitude at a small level of mistuning. At higher levels of random mistuning, this drops
to 50% higher than the tuned vibration level. The other four lines in this plot are for
nominal designs that include intentional mistuning in various harmonic patterns. These
intentional mistuning patterns have 10% amplitude in stiffness (i.e., the blade stiffness
varies from 1.1 to 0.9 times the original blade stiffness), and the stiffness of each blade
varies in a sinusoidal manner (i.e., spatially harmonic patterns of intentional mistuning,
harmonics 5-8). The four harmonic intentional mistuning patterns shown all lead to a
significant reduction in the amplitude magnification. In fact, the peak amplitude
magnification is cut in half, from around 90% above the tuned level for the original
design, to at most 45% above the tuned level for the designs with intentional mistuning.
Furthermore, it can be seen that the designs with intentional mistuning are relatively
unaffected by the level of random mistuning. This implies that intentional mistuning
makes the design more robust with respect to random mistuning,.




1.9 i i * i 4 L ¥

1.3
1.2
1.1

1

5

= i Original

:‘f—é 1.8 [
§ 1'7 " hs ..... P eeene =
o 16T

©

g 1.5}

g_ VA_,_.,M&,A.A._:&_S_,:

= 1.4

2

=

)

8

)

o.

K o

>

(0]

0 001 002 003 004 005 006 0.07 0.08
‘Standard Deviation of Random Mistuning

Fig. 8: An example of how the use of intentional mistuning can reduce forced response
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strength for various designs of an industrial blisk. The original design (nho intentional
mistuning) shows a maximum amplitude increase of around 90% due to random mistuning.
Four different designs with sinusoidal patterns of intentional mistuning (harmonics 5-8) yield a
significant reduction in the amplitude magpnification.

Of course, it is important to understand how intentional mistuning works. On this topic,
the investigators have identified a key physical mechanism [5]. A mode shape of a
system with only random mistuning may be fairly localized, but there still tends to be a
dominant nodal diameter component. That is, the mode is a perturbation of a nodal
diameter mode. With intentional mistuning, each mode tends to be more localized; but it
is comprised of many nodal diameter modes, with no single nodal diameter mode being
dominant. This means that the mode of a system with intentional mistuning is less likely
to be excited by an engine order excitation. Thus, intentional mistuning leads to an
increase in mode localization, but it leads to a decrease in the forced response by
effectively reducing the modal forces.

Furthermore, the effectiveness of intentional mistuning has been verified experimentally
[6]. In conducting the experiment, four different sets of lead weights were glued to the
tips of the blades in order to modify the effective stiffnesses of the blades. Each of the
four sets of weights corresponded to a mistuning pattern chosen to demonstrate the
effects of random and intentional mistuning on the dynamic behavior of the blisk:

* Nearly Tuned: In the first set, nearly equal weights were used in order to provide a
tuned baseline, from which the other three mistuning patterns diverge (see Fig. 7).
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¢ “Random Mistuning”: The second set was a “random” pattern, consisting of
weights selected to give the blisk a mistuning pattern demonstrating the high
amplitude magnification effects of random mistuning. This pattern was chosen based
on Monte Carlo simulations of the rotor’s mistuned forced response to engine order 7
excitation, with 2% standard deviation of mistuning. \J

* Intentional Mistuning: The third set was a square-wave intentional mistuning
pattern, chosen from simulations to be a more effective design that is less susceptible
to the harmful impact of random mistuning. The square-wave pattern consisted of
two periods with 3% amplitude: the first six blades each had modal stiffness 3%
above the original design, the next six blades each had modal stiffness 3% below the
original design, and then this pattern was repeated for the other 12 blades.

* Combined Mistuning: The fourth set was a combination of the intentional and
random mistuning patterns, which was obtained by adding the mistuning values of
patterns 2 and 3.
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Fig. 9: Comparison of maximum blade amplitudes for the four mistuning cases as determined
from a reduced order model (ROM), a finite element model (FEM), and experimental
measurements (Expt).

Figure 9 shows the relative maximum amplitudes for the four cases studied, with three
values shown for each case: numerical predictions from a 95-DOF reduced order model
(ROM), numerical predictions from a 141,840-DOF finite element model (FEM), and
-experimental measurements (Expt.). All values are normalized by the corresponding
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nearly tuned maximum amplitude, and the relative magnitude predicted for a perfectly
tuned case is indicated by a dashed line.

Two significant effects of intentional mistuning can be seen. First, the maximum
amplitude of the blisk with intentional mistuning alone is somewhat lower than the
maximum amplitude of the nearly tuned case; in fact, it is similar in magnitude to what
would be found if a perfectly tuned blisk could be created. Second, and more
significantly, the presence of intentional mistuning has prevented significant amplitude
magnification effects due to the addition of random mistuning. The case with combined
“random” and intentional mistuning has maximum amplitudes no higher than those of the
nearly tuned case, despite the large amount of mistuning present. These results clearly
demonstrate the potential for significant amplitude increases due to random mistuning, as
well as the beneficial effects of intentional mistuning.

Finally, a key aspect of the intentional mistuning design strategy is the selection of the
intentional mistuning pattern. In recent work, three design guidelines were found for
selecting the pattern of intentional mistuning: (1) assign an equal or nearly equal number
of blades to each blade type; (2) distribute the blades of each type so that they are “well
balanced” about the disk; and (3) assign an equal or nearly equal number of blades to
each group of consecutive blades of the same type. Intentional mistuning configurations
that satisfy these guidelines include square-wave, sawtooth, and staircase patterns.
Numerical simulations indicate that these guidelines can be used to reduce the design
space dramatically, yet the reduced design space includes optimal or near-optimal
intentional mistuning patterns [12].
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INTERACTIONS AND TRANSITIONS

Participation/Presentations at Meetings and Conferences
The results from this research program have been presented at the following conferences:

- * AJAA/ASME/ASCE/AHS  Structures, Structural Dynamics, and Materials
Conference and Exhibit

* ASME Turbo Expo

* International Conference on Structural Dynamics Modelling

* International Forum on Aeroelasticity and Structural Dynamics

* National Turbine Engine High Cycle Fatigue Conference

A list of conference papers is included in the previous section of this report.

Consultative and Advisory Functions to Other Laboratories and Agencies

The investigators have worked closely with members of the Turbine Engine Fatigue
Facility of the Air Force Research Laboratory (AFRL) at Wright-Patterson Air Force
Base. In particular, the investigators collaborated with Dr. Charles Cross in designing the
validation blisk and with Capt. Keith Jones in transitioning the experimental setup to
AFRL (see the “Transitions” section below).

In addition, the investigators were selected by the NASA Glenn Research Center to
perform vibration testing and mistuning identification on a prototype of a next-generation
bladed disk design, which is shown in Fig. 10. NASA selected the investigators because
the mistuning identification technique developed in this research program was the first
practical method for identifying mistuning in integrally bladed rotors. First, the
mistuning present in the manufactured rotor was identified. Then, free and forced
vibration response predictions were calculated from numerical simulations using the
identified mistuning parameters, and these predictions were compared to experimental
measurements. Results are shown in Fig. 10 for a mode shape found at 734.1 Hz. It can
see that the predictions agree well with experimental results.
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Fig. 10: Left: NASA rotor bemg tested at the UM Turbomachinery Vibration Laboratory.
Right: Comparison of a mode shape from experimental measurements to the results from a
numerical prediction based on the mistuning ID technique.
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Transitions

An important part of the Turbomachinery Vibrations Laboratory is the laser vibrometer
and the computer-controlled positioning and traveling-wave excitation systems (see Figs.
1 and 2). The vibrometer-positioning system was developed as a means of taking
accurate measurements at precise locations on each blade of a rotor. Furthermore, the
acoustic excitation system with phase-synchronized and gain-adjusted speakers provides
non-contacting, traveling-wave excitation. This effectively mimics engine order
excitation in a bench test environment. The experimental setup has proven to be very
successful for collecting quantitative data, and it has been transitioned to the Air Force: a
similar system has been installed at the Turbine Engine Fatigue Facility at Wright-
Patterson Air Force Base. In fact, AFRL and UM researchers have filed a Disclosure and
Record of Invention (AF Form 1279) for the technology developed for the excitation
system (“Programmable Multi-Channel Amplitude and Phase Shifting Circuit,” K. W.
Jones, C. Pierre, S. L. Ceccio, J. Judge, S. Fuchs, Air Force Research Laboratories, April
2002). Also, a patent for this invention is in the process of being filed.

The mistuning identification technique developed in this research is a pioneering method
that has had a major impact on the turbine engine community. It has sparked the
development of similar techniques by researchers at other universities, and experimental
mistuning identification systems are now installed or planned at several government and
industry laboratories. '

The intentional mistuning research has also had a significant impact on the field.
Researchers and engineers at the Air Force and turbine engine companies are currently
pursuing this design strategy in order to develop more robust and reliable turbomachinery
rotors.




